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Abstract—The 802.11 standard, known as WiFi, is currently

being used for a wide variety of applications. The increasing

number of WiFi devices, their stringent communication re-

quirements, and the need for higher energy-efficiency mandate

the adoption of novel methods that rely on monitoring the

WiFi communication stack to analyze, enhance communication

efficiency, and secure these networks. In this paper, we propose

MonFi, a publicly-available, open-source tool for high-rate, effi-

cient, and programmable monitoring of the WiFi communication

stack. With this tool, regular user-space applications can specify

their required measurement parameters, monitoring rate, and

measurement collection method as event-based, polling-based, or

a hybrid of both. We also propose methods to ensure deterministic

sampling rate regardless of the processor load caused by other

processes including packet switching. In terms of sampling rate

and processing efficiency, we show that MonFi outperforms the

Linux tools used to monitor the communication stack.

Index Terms—WiFi stack, 802.11, Real-time monitoring, Over-

head, Linux.

I. INTRODUCTION

WiFi devices currently cost as low as $3, and WiFi devices
running the Linux operating system cost as low as $9. WiFi
chips are being used in various products, including laptops,
smartphones, and IoT devices such as cameras, thermostats,
light bulbs, door locks, and home appliances. Communication
among these IoT devices is integral to developing Building
Management Systems (BMSs), smart cities, and Industry 4.0.
The economic value of WiFi is expected to rise to $3.5
trillion in 2023, up from $2 trillion in 2018 [1]. An important
observation is that by 2021, about 60% of the mobile devices’
traffic will be offloaded onto WiFi networks. The rapid in-
crease of WiFi devices has urged Federal Communications
Commission (FCC) to allocate newer frequency bands for
WiFi communication. The broad adoption of WiFi is supported
by: Firstly, compared to other wireless technologies such as
Bluetooth and ZigBee, WiFi provides higher data rates, mak-
ing delay-sensitive and multimedia communication possible.
For example, surveillance cameras such as Ring and Nest use
WiFi. Secondly, since WiFi operates in unlicensed bands, it is
relatively cheap and does not require a subscription, compared
to cellular networks. Finally, the wide deployment of WiFi
Access Points (APs) lowers the costs pertaining to adopting
this standard for wireless connectivity.

Collecting monitoring data1 from WiFi devices makes is
possible to study network operation [2]–[5], improve per-

1Other terms used in the literature are measurement collection, performance
monitoring, network inspection, statistics collection, and network telemetry.

formance [6]–[8], and secure these networks [9]–[12]. For
example, methods have been proposed to manage channel as-
signment to APs, control the association of stations, and adjust
transmission power, to mention a few [13]–[15]. Although
collecting monitoring data every few seconds would be enough
for some algorithms (e.g., channel assignment), immediate
reactions to network dynamics require high-rate, real-time
monitoring. A sample scenario is per-flow and per-packet
scheduling methods in dense networks [8]. Also, existing re-
search shows the importance of packet-level analysis for power
management [6], [16]. Concerning the new 802.11ax standard,
the allocation of resource blocks, quite time period, and Target
Wake-up Time (TWT) requires monitoring the communication
efficiency and packet backlog for each station [17]. We also
observe the adoption of data-driven and machine-learning-
based methods for performance enhancement (e.g., delay
reduction [4], power management [18]–[20]) and security
provisioning [9]–[12].

The existing works reveal a major challenge: the lack of
a tool for high-rate, real-time, efficient, and programmable
monitoring of WiFi APs and stations. Due to this shortcoming,
a large number of existing works rely on simulation. Also,
when high-rate monitoring is necessary, some works instead
use packet capture and static data analysis [9]–[11]. Another
category of works relies on tools that have been primarily
designed for infrequent monitoring and configurations [3], [4].
For example, tools such as iw and ethtool can be used to
collect some of the required parameters; however, their effi-
ciency is far below what is required for high-rate monitoring.
We also note that the WiFi management systems developed by
companies such as Cisco’s Meraki, HP’s Aruba, and Arista are
proprietary and cannot be used for research and development.
The literature also includes several protocols proposed for
remote configuration and management of APs. However, the
proposed proprietary protocols and the standard telemetry
protocols (e.g., OpenConfig [21] and NETCONF [22]) only
provide a high-level interface for remote interactions, and they
do not offer any means to monitor the WiFi stack.

In this work, we present MonFi, a Linux-based, open-source
tool for efficient, high-rate, and programmable monitoring of
WiFi devices2. This tool allows for monitoring the complete
WiFi stack—Network Interface Card (NIC), driver, mac80211,

2The implementation of MonFi can be found at the following link:
https://github.com/SIOTLAB/MonFi
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cfg80211, hostapd, and qdisc. The monitoring frequency and
the type of measurements collected can be programmatically
specified using the user-space component of MonFi. We
present methods to monitor the WiFi stack, and also implement
and study methods for reducing the overhead of kernel to
user-space communication and stabilizing monitoring rate in
the presence of interfering loads on the processor. Through
empirical evaluations, we show the higher efficiency of MonFi
in terms of monitoring rate, stability of monitoring rate,
and processor utilization, compared to the existing tools. For
example, MonFi achieves about 28% higher monitoring rate
and 16% lower processor utilization compared to debugfs,
which is a widely-used method for monitoring communication
stack. Compared to ioctl, the monitoring rate of MonFi is 21x
faster.

As a publicly-available open-source tool, MonFi offers new
opportunities in developing WiFi systems, from smart homes
to enterprise networks to real-time industrial systems. Besides,
MonFi reduces the development costs associated with using
additional measurement devices. For example, by providing
per-station information, MonFi eliminates the need for using
additional hardware tools to analyze stations’ power status.

The rest of this paper is organized as follows: Section II
overviews the literature and the tools used to monitor the WiFi
stack. We present the design and implementation of MonFi
in Section III. Section IV presents performance evaluation
results. We conclude the paper in Section V.

II. BACKGROUND

In this section, we first overview the existing works that
leverage WiFi stack monitoring for various purposes. Then
we overview the tools available for monitoring WiFi devices.

A. Enhancing WiFi Networks by Collecting Monitoring Data
Many studies highlight the importance of collecting mon-

itoring data across the WiFi stack. Centrally-controlled WiFi
networks heavily rely on measurement collection from APs
to perform channel assignment, station association, and mo-
bility control [7], [13], [14]. However, these works primarily
focus on application-layer data collection protocols and pro-
grammability. For example, a majority of these works rely
on OpenFlow and Open vSwitch (OVS) to collect per-flow
statistics. Also, a large number of these works assume that the
required statistical data are available either via Linux tools
(e.g., debugfs [7], [23], procfs [24]) or simulation [13]. An
overview of these works can be found in [15].

Nan et al. [3] utilized Linux tools (cf. Section II-B) to collect
several parameters including queue length, Airtime Utilization
(AU), physical data rate, and retry rate, every 100 ms. They
show that WiFi latency accounts for more than 80% of video
frame latency in personalized live-streaming applications. Pei
et al. [4] proposed WiLy, a user-space application that time
stamps all packet exchanges via the AP’s wireless and wired
interfaces. WiLy uses libpcap to capture packets and rsync to
exchange the results with a server. Analyzing the data collected
by WiLy shows that in about 50% of the cases, WiFi latency

comprises more than 60% of Round-Trip Delay (RTT). To
study the impact of various parameters on WiFi latency, they
use Linux tools such as debugfs, ifconfig, and iw every 10
seconds to reduce the processing overhead of APs. Other
similar studies are [25] and [26]. Pei et al. [27] introduced
the WiFi Manager app to collect association time information
across a large number of stations. Association delay data are
then used along with information about stations and APs (e.g.,
number of associated stations, encryption type, AP model) to
identify the causes of association delay. The effect of buffer
size on the delay experienced by stations has been studied
in [2], [28]. For example, [2] highlights the importance of
monitoring queuing discipline (qdisc) layer and driver’s queues
to understand the causes of communication delay with stations.

Using MAC-level information such as inter-packet intervals
has been used for adjusting power-saving methods [6], [16],
[29]. For example, Xiao et al. [30] use parameters including
rate, inter-packet interval, and MAC transmission to charac-
terize traffic and derive energy consumption models. Pyles et
al. [20] study the effect of incoming packet rate on the extra
time spent in awake mode by stations employing Power Save
Mode (PSM).

Several studies have collected WiFi communication statis-
tics to classify IoT devices or detect attacks to or from these
devices [9]–[11]. Sivanathan et al. [10] discuss the potential
benefits of real-time data collection, but they do not propose
any solution.

B. Existing Monitoring Tools
Most WiFi NIC drivers are implemented either as an ex-

tension of the kernel or as a loadable kernel module; thus,
encapsulating hardware resources within the protected kernel
space memory. To access the data maintained by the NIC and
driver, user-space programs rely on network management tools
such as iwconfig, iwpriv, ethtool, and ifconfig. These tools
generally use ioctl, sysfs, or netlink for the communication
between user-space processes and kernel.

ethtool allows for monitoring and configuring NIC. This
tool constitutes a user-space module and a kernel-space mod-
ule. These two modules communicate via ioctl, which extends
the native Linux system call operations by providing functions
for hardware configurations that use predefined data structures.
These functions can be modified when new functionalities
are added to the hardware. However, this may result in non-
backward-compatible updated functions. Thereby, ioctl is not
user friendly and it is difficult to extend. The information
provided by ethtool with the -S (--statistics) option
can be helpful in obtaining channel state information along
with driver statistics such as the number of packets trans-
mitted or received by the NIC. For example, AU can be
retrieved using ch_time_busy and ch_time. However,
the data retrieved by ethtool is not extensive and does not
include some of the essential data about network performance.
For example, per-station statistics, state of qdisc, and NIC’s
register values, such as current NAV or failed FCS count,
cannot be collected. Additionally, ethtool retrieves all the



counters at once, preventing the user from specifying the list of
measurement parameters. This results in the extra overhead of
polling additional registers and driver’s data structures, as well
as searching for the required information in the collected data
by user applications. Additionally, although the NIC updates
AU per its internal clock cycle, ethtool reports AU time in
milliseconds granularity, which results in lower accuracy and
higher reporting delay.

SoftMAC-based wireless drivers commonly provide a debug
mode utilizing Virtual File System (VFS). Unlike regular files
that reside on disk, VFSs (e.g., sysfs, procfs, and debugfs)
reside in the main memory and facilitate communication
between user-space and kernel-space. These interfaces remain
empty unless a user-space process requests the resources.
When requested, the kernel gathers the required measurements
and populates the interface. For example, the ath9k driver
utilizes regdump-debugfs to retrieve the values stored in all
registers exposed to the driver by the NIC. A major shortcom-
ing of debugfs is that it does not allow to query an arbitrary
set of registers of the NIC. This results in a large number
of unnecessary PCIe bus interrupts. Furthermore, data transfer
size is limited to one memory page [31].

Using netlink addresses some of the aforementioned chal-
lenges. Firstly, since it is a socket-based mechanism, netlink
can be initiated by both kernel-space and user-space processes,
whereas, VFSs and ioctl can be instantiated only by user-space
processes. This is particularly useful for event-based data
collection. For example, consider a scenario where the kernel
sends measurements to a user-space application whenever a
packet is received. Secondly, netlink facilitates asynchronous
communication by storing messages in queues and initiating
the receiver’s reception handler. The receiver can process
the information synchronously or asynchronously. In contrast,
ioctl and VFSs communicate synchronously. netlink can also
multicast to multiple processes at once, whereas, ioctl and
VFSs support unicast messages only.

III. DESIGN AND IMPLEMENTATION OF MonFi
In this section, we identify the measurements that are

indicative of network operation and dynamics, and propose
methods for collecting these measurements from various com-
ponents of the networking stack. We also present methods to
achieve monitoring rate determinism. Finally, we discuss the
monitoring modes provided by MonFi.

A. Architecture
Figure 1 presents the architecture of MonFi. The Con-

troller is a user-space module that configures and receives
measurements from the Collector. The Collector is a kernel-
space module that collects data across the network stack. The
Collector is implemented as a part of the driver to share a set
of functions and data structures. The Collector also interacts
with other modules of the communication stack.

In general, current 802.11 drivers are categorized as either
SoftMAC or FullMAC. SoftMAC drivers implement a part
of the MAC layer management entity (MLME) in software,
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Fig. 1. The architecture of MonFi. The Controller allows use-space programs
to specify the type, rate, and method of collecting measurements across the
WiFi stack. The Controller collects the requested data from the stack. Various
kernel modules have been modified to facilitate collecting monitoring data
from them. Note that the hostapd daemon is only used when MonFi runs in
an AP.

thereby utilizing the host system’s processing resources. Only
time-critical MAC functions, such as managing timeouts, inter-
frame spacing, and channel access backoff, are implemented
in the hardware. Whereas, FullMAC utilizes an additional
processor on the NIC to implement all MAC functions within
the firmware. Currently, most commercial WiFi adapters rely
on a SoftMAC architecture [32], especially considering the
ease of updating. Thus, in this paper, we assume the underlying
WiFi NIC’s driver is a SoftMAC.

To perform the standard AP functionalities, we use hostapd
[33], which is used by Commercial Off-The-Shelf (COTS)
APs. hostapd is a user-space daemon that handles beacon
transmission, authentication, and association of stations.

B. Extensive Data Collection Across the Protocol Stack

In this section, we identify and discuss the process of
monitoring NIC, driver, qdisc, and the other components of
the WiFi stack.

1) PHY and MAC measurements: WiFi NICs provide I/O
memory regions consisting of registers that can be accessed
via the PCIe bus. These registers allow to configure the NIC
and obtain its internal status. Accessor functions, such as
ioread32() and iowrite32(), are utilized to get and set
the status of the registers, respectively. The Collector utilizes
these functions to extract register values from the NIC. For
example, to compute AU, which reflects the level of activity
on the wireless channel, the Collector fetches the values of
AR_CCCNT and AR_RCCNT registers (available in Atheros
chipsets). The former register stores the time elapsed since the
start time of the NIC, and the latter stores the amount of time
the NIC has been sensing activity on the channel. We denote
these measurements as T and B, respectively. The AU during
an interval t1 to t2 is computed as (Bt2 �Bt1)/(Tt2 � Tt1).



Most COTS NICs (e.g., Netely NET-900M and Compex
WLE900VX) operate with the reference clock speed of 44
MHz when using the 2.4 GHz band and 40 MHz when using
the 5 GHz band (considering a 20 MHz channel), and update
the values of the registers corresponding to the clock rate.
The Collector retrieves the values of these registers, and then,
either decodes them to decimal values and in milliseconds
format, or stores the raw measurements that can be decoded
asynchronously when needed. The Controller also provides the
functionality that allows user-space applications to specify the
list of registers or register addresses.

Compared to the legacy 802.11 standards (i.e., a/b/g), the
recent standards (i.e., n/ac/ax) offer numerous physical layer
enhancements that result in bit rates beyond 600 Mbps.
Some of these enhancements are concurrent Multiple-Input
Multiple-Output (MIMO) streams, wider channel bandwidth,
and higher-order Modulation and Coding Schemes (MCSs).
These parameters can be configured using hostapd’s con-
figuration file or hostapd_cli reconfigure. hostapd
utilizes netlink to communicate with the WiFi Configuration
API—cfg80211. The cfg80211 module acts as a bridge be-
tween user-space and kernel, and provides a unified interface
in the form of callback functions to control the NIC. Each
callback implemented in cfg80211 is associated with a cor-
responding function in the driver to configure the NIC. The
Collector intercepts the netlink events triggered by hostapd to
keep track of any modifications applied to the NIC.

The physical layer configuration of the NIC may not nec-
essarily represent the parameters used by each AP-station
pair when communicating. For example, even when an AP
announces supporting 40 MHz channels, the station may not
support this channel width, and instead use a 20 MHz channel.
Also, the two ends of a communication link dynamically
change their MCS, based on multiple factors such as Received
Signal Strength Indicator (RSSI) and retransmission rate.
Therefore, each link’s physical layer parameters are essen-
tial for characterizing communication efficiency in terms of
metrics such as throughput and Packet Error Rate (PER) on a
per-station basis. To this end, MonFi collects RSSI, MCS, and
the number of MAC layer retransmissions, on a per-station
basis, as follows. The kernel maintains a global list of de-
vices utilizing the net_device structures in mac80211. The
*priv field contains driver-specific structures and maintains
the statistics for respective stations. This field is represented by
ath_softc in Atheros NICs. The Controller module allows
user-space applications to specify the stations that must be
monitored. The Collector collects per-station measurements
requested by the Controller by polling the corresponding
fields of the softc data structure and reports them to the
Controller along with the MAC address of the station. In order
to avoid data copy, the pointer to the softc data structure is
shared between all tasks in the driver. However, race condition
happens when multiple tasks in the driver try to access softc
concurrently. We utilize a mutex lock before accessing softc
to avoid race conditions.

The 802.11 standard supports various power-saving methods

to allow stations to switch to sleep mode and conserve
energy. The power state of each associated station is main-
tained by mac80211 (cf. Figure 1). Whenever a PS-POLL
or Null packet is received by the AP, mac80211 notifies
the respective driver about the change in power state via
the drv_sta_notify() function. Whenever the driver
receives an update, the Collector forwards the updated power
state and the MAC address of the station to the Controller.

To reduce the overheads pertaining to channel access and
PHY and MAC headers, the MAC layer of high-throughput
WiFi standards (i.e., 802.11n/ac/ax) aggregates multiple MAC
Protocol Data Units (MPDUs) into an Aggregated-MAC pro-
tocol data unit (A-MPDU). MonFi monitors the number of
packets aggregated in each A-MPDU, the number of MPDUs
currently enqueued in each queue of the driver, and the
instance each packet is sent, as follows. Frame aggregation
is performed in the software queues maintained in the driver.
These queues act as buffers between the NIC’s queue and the
upper layers in the protocol stack. When there are multiple
packets in a queue of the driver, they are aggregated into a
single MPDU. NIC notifies the driver via a callback function
after processing each packet from the hardware queue. For
example, in Atheros NICs, ath_tx_tasklet() is called
for informing the driver to process the next packet for trans-
mission.

2) Monitoring qdisc: In Linux systems, there is a qdisc
assigned to each NIC to buffer egress traffic. The Linux
kernel introduces a rich set of queuing disciplines between
the network subsystem in the kernel and mac80211, enabling
a flexible traffic control framework. The efficiency of the
qdisc layer is dependent on its packet scheduling method,
the size of the queues, the rate of incoming traffic, and the
rate of WiFi transmission. When the queue size is small, the
qdisc layer may not be able to absorb bursts of incoming
traffic while waiting for wireless transmission, thereby causing
packet drops. Alternatively, longer queues may cause long
end-to-end delays (a.k.a., bufferbloat [2]). Given the high
impact of qdisc on packet scheduling and delay, we collect
the number of packets currently enqueued in each queue
of the qdisc layer. By default, every network interface is
assigned a pfifo fast qdisc as its transmission qdisc. This
mechanism contains three bands, and dequeuing from a band
occurs when the upper bands are empty. Each variant of qdisc
is implemented as a kernel module (in /net/sched) and
contains .enqueue and .dequeue functions. In MonFi,
we modified these kernel modules to report the status of
qdisc by logging the number of packets currently enqueued
in each band. Our current implementation supports pfifo fast
and PRIO qdiscs. This method can easily be applied to other
qdiscs such as Hierarchical Token Bucket (HTB).

C. Monitoring the Host system
In an ideal use-case, the behaviour of packet reception and

transmission can be determined with the help of the data col-
lection methods described earlier in this section. However, we
need to note that the tasks performed by various components



of the networking sub-systems (e.g., mac80211, driver) and
the additional processes introduced by MonFi are scheduled
by the operating system to run on the processor cores available
in the system. Hence, we evaluate the available and occupied
computational resources. Depending on the available hard-
ware resources, this allows the user to specify monitoring
parameters (e.g., monitoring rate) that do not impose high
processing overhead. Also, MonFi allows to keep track of
the latency between requesting and receiving a measurement
by the Controller. For real-time systems that react to network
dynamics, this latency determines the validity and usefulness
of the measurements obtained.

1) Dedicating computing resources to MonFi: Most mod-
ern processing platforms are based on Symmetric Multi-
Processing (SMP) architecture consisting of multiple phys-
ical processor cores that are capable of executing multiple
threads concurrently. User-space threads, software interrupts,
and hardware interrupts are evenly scheduled to be served
by processor cores. Hence, the performance of MonFi can
be easily interfered by background processes and excessive
context switching.

To address this problem, we bind the execution of MonFi’s
components with an isolated processor core, such that no
other processes or interrupts are scheduled on this core. For
example, consider an Intel i5 processor that includes two
physical cores, PC1 and PC2, where each core contains two
logical cores, LC1/LC3, and LC2/LC4, respectively. Utiliz-
ing isolcpus=1,3 kernel boot parameter, we isolate the
physical core PC1 for operating system and other background
tasks. Thus, the physical core PC2 is dedicated to the execution
of MonFi’s components. To this end, first, LC2 is dedicated
to the Controller via sched_affinity() or taskset
system calls. Second, LC4 is dedicated to the driver. Since the
Collector is an extension of the driver, it runs on LC4. Since
all the software interrupts executed as the result of hardware
interrupts are scheduled on the same core [34], [35], all the
software interrupts generated by the driver are also scheduled
on LC4. Third, utilizing the /proc/interrupts file, we
obtain all possible components that can generate hardware
interrupts and set the smp_affinity of these components to
LC1 and LC3; thereby, no hardware interrupt will be scheduled
on LC2 and LC4.

D. Sharing the Collected Data with User-space

The Collector shares its data with user-space for further
processing. As discussed in Section II, both procfs and ioctl
are less efficient compared to netlink. Therefore, we use
netlink sockets for communication between kernel-space and
user-space. We simply refer to this method of Collector and
Controller communication as MonFi w/ netlink (MonFi-NL).
To further reduce the overhead of this communication, a
memory-mapped region is established for netlink’s receive and
transmit buffers. These buffers are shared by the Controller and
Collector to prevent data copying overhead. We refer to this
mechanism as MonFi w/ mmaped-netlink (MonFi-MNL).

User-space applications can use the Controller to specify
three types of monitoring modes: (i) Event-based Data Col-
lection (EDC), (ii) Polling-based Data Collection (PDC), and
(iii) Event and Polling-based Data Collection (EPDC), which
is a hybrid of EDC and PDC. We explain these modes as
follows.

1) Event-based data collection (EDC): In this mode, the
Collector sends monitoring data to the Controller whenever an
event occurs. The event type is specified by the Controller. For
example, sample events causing the NIC to generate an inter-
rupt are packet reception, channel availability after Distributed
Inter Frame Space (DIFS), and the expiration of software
beacon alert timer (a.k.a., bcntimer used to trigger periodic
beacon transmission). NIC interrupts are handled by the driver
to determine the interrupt type and call an appropriate tasklet.
For example, with Atheros NICs, ath9k_tasklet() and
ath_isr() handle interrupts and then call tasklets such as
ath_tx_tasklet() and ath_rx_tasklet(). We have
modified the driver to monitor these interrupts and trigger data
collection whenever a match in the list of events provided by
the Controller is found.

2) Polling-based data collection (PDC): This mode is par-
ticularly useful in applications such as channel allocation, sta-
tion handoff, packet scheduling, and intrusion detection. In this
mode, the Controller collects data from the Collector in fixed
or variable intervals, depending on the user-space application’s
demand. Variable intervals can be specified by using various
distributions such as the Poisson distribution. We eliminate
the overhead of user-space to kernel-space communication as
follows. Measurement collection parameters are passed by the
Controller to the Collector once. These parameters primarily
include: (i) the Inter-Measurement Interval (IMI), either as
a fixed value or the parameters of the distribution used to
determine IMI, and (ii) the total number of measurements.
Once received, the Collector generates reports according to
IMI configuration. Also, we reduce the overhead of Collector
to Controller by allowing the Controller to specify when
data must be sent up. Specifically, instead of sending all
measurements, the Controller can instruct the Collector to send
upward reports only when the difference from the previously
reported value is higher than a particular value. This threshold
is specified on a per-measurement-type basis.

3) Event and Polling-based Data Collection (EPDC): In
addition to the set of measurements collected at the time of an
event, this mode allows for collecting the past n measurements
preceding the occurrence of the event. We have implemented
a circular queue in the Collector module. At each IMI, the
Collector gathers and places a new measurement into the
queue. Once an event occurs, the Collector sends the most
recent measurement, as well as the values in the circular queue,
to the Controller. This approach is particularly useful for time
series analysis and neural network algorithms such as Long
Short-Term Memory (LSTM), which require recent history of
n measurements in the temporal domain to estimate the trend
in a time series.



Fig. 2. (a) Measurement collection rate (per second) and (b) average CPU
utilization as a function of IMI when using debugfs, ioctl, MonFi-NL,
and MonFi-MNL. The monitoring rate of MonFi-MNL is 28% faster than
debugfs.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the monitoring rate and process-
ing overhead of MonFi when used to monitor the operation
of an AP. The wireless NIC used is Compex WLE900VX,
which includes the QCA9880 chipset and supports 3x3 MIMO
802.11ac. The driver used is ath10k. The processor is a dual-
core Core i5. A similar hardware configuration is used by the
station associated with the AP.

1) MonFi vs ioctl and debugfs: We first evaluate moni-
toring rate and its effect on processor utilization. Using de-
bugfs, MonFi-NL, and MonFi-MNL, we collect the following
parameters: AU, power state of the associated station, and five
registers of the NIC. Using ioctl, we only collect AU. These
experiments were conducted in the presence of regular CPU
load, which is less than 10% and is caused by the normal
functioning of the operating system tasks and AP functionality.

Figure 2(a) shows measurement collection rate and Figure
2(b) shows average CPU utilization as a function of IMI.
As we reduce IMI, the monitoring rate achieved with each
tool increases up to a certain point. The highest monitoring
rate is provided by MonFi-MNL at 48005; whereas, ioctl,
debugfs, and MonFi-NL plateau at 2115, 37481, and 47033
measurements per second, respectively. Although ioctl only
collects AU, it demonstrates significantly lower monitoring
rate and higher CPU utilization over all IMI values, compared
to the other tools. Specifically, the monitoring rate of ioctl is
21x slower compared to MonFi-MNL. Compared to MonFi-
MNL, the highest measurement collection rate provided by
debugfs is 22% lower and its processor utilization is 20%
higher, on average. Considering the higher performance of
MonFi-NL and MonFi-MNL, we only consider these tools in
the rest of studies presented in this section.

2) Impact of processor load on monitoring performance:
We now evaluate how a higher processor utilization caused by
a user-space daemon affects monitoring rate. This represents
a scenario where a daemon is performing real-time data
analysis and decision making. We utilize the stress-ng tool
to generate a synthetic processor load. We evaluate using both
dedicated and non-dedicated cores for the execution of MonFi
processes, as explained in Section III-C1. Note that when using
dedicated cores, the synthetic load is not scheduled on the
cores assigned to MonFi. Figure 3 shows that reducing IMI
and increasing processor load affect monitoring rate when

Fig. 3. (a) Measurement collection rate in the presence of a synthetic 30%
processor load. (b) Maximum monitoring rate when the synthetic processor
load increases from 35% to 50%. Based on these results, using dedicated
cores to achieve deterministic monitoring performance is essential.

the cores are shared. Considering MonFi-MNL, Figure 3(a)
reveals that using dedicated cores increases the maximum
monitoring rate by 1725 compared to shared cores. Figure
3(b) shows that using dedicated cores results in sampling rate
stability versus processor load. When the synthetic load is
increased from 35% to 50%, using dedicated cores achieves a
constant monitoring rate of about 47000, while shared cores
drops monitoring rate from 44707 to 38891, on average. These
results confirm the importance of using MonFi with dedicated
cores when a stable monitoring rate is required. Figure 3(b)
also demonstrates the impact of using mmap-netlink instead
of netlink to achieve a higher monitoring rate. For example,
when the synthetic load is 35%, using MonFi-MNL collects
1621 and 1186 measurements higher than MonFi-NL with and
without using dedicated cores, respectively.

3) Impact of packet switching on monitoring performance:
In this section, we study the effect of packet switching on
the monitoring rate of MonFi-MNL. Figures 4(a) and (b)
show the results for 100-Bytes and 1400-Bytes packets being
switched by the AP. These packets are received over the
wireless interface (using the 802.11ac standard) and then
switched to the wired interface. We were able to achieve the
maximum throughput of 500 Mbps and 700 Mbps for 100-
Byte and 1400-Byte packets, respectively. Reducing packet
size results in a lower throughput due to the higher overhead of
header transmission and waiting time caused by channel access
back-off. For a given throughput rate, using smaller packets
increases AP’s processing overhead, which is caused by the
higher number of interrupts, header processing, and packet
copying operations. As both figures show, using shared cores
results in a significant drop in the number of measurements per
second. For example, when using 100-Byte packets, increasing
the AP’s switching rate from 100 Mbps to 500 Mbps causes
the number of measurements per second to drop from 46508
to 42525. In contrast, using dedicated cores shows a relatively
steady behaviour (less than 1% variation).

Our results confirm that MonFi can be used on average-
grade dual-core APs for very high speed, efficient WiFi stack
monitoring. With the denser deployment of APs and the
prevalence of the 802.11ac and ax standards, the need for
microsecond-level monitoring escalates.



Fig. 4. Measurement collection rate (left y-axis) and CPU utilization (right
y-axis) versus packet switching rate for 100-Byte (a) and 1400-Byte (b)
packets. These results show that using dedicated cores is necessary to ensure
deterministic monitoring rate in the presence of packet switching overhead.

V. CONCLUSION

With the higher number and demand of WiFi devices,
supporting efficient, high-rate monitoring of the WiFi stack
is an essential requirement to analyze network operation,
enhance performance, and enforce security methods. In this
work, we presented MonFi, which allows user-space applica-
tions to specify the type and rate of collecting measurements.
Our empirical performance evaluations confirm the higher
sampling rate and processing efficiency of MonFi compared
to the existing Linux tools.
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[19] F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson,
and V. Ram, “A flexible machine-learning-aware architecture for future
WLANs,” IEEE Communications Magazine, vol. 58, no. 3, pp. 25–31,
2020.

[20] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “SAPSM: Smart
adaptive 802.11 PSM for smartphones,” in UbiComp, 2012, pp. 11–20.

[21] Vendor-neutral, model-driven network management designed by users.
[Online]. Available: https://openconfig.net

[22] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241, 2011.

[23] Y. Han, K. Yang, X. Lu, and D. Zhou, “An adaptive load balancing
application for software-defined enterprise WLANs,” in 2016 Inter-
national Conference on Information and Communication Technology
Convergence (ICTC). IEEE, 2016, pp. 281–286.
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